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Abstract

Several theorems pertaining to the stability of discrete, linear, cir-
culatory (i.e., nonconservative) systems are established. One theorem
states the condition under which static loss of stability cannot occur. Thg
other theorems are associated with the destabilizing effect of velocity-

dependent forces. The usefulness of the new theorems in stability analysis

is indicated.



Introduction

In the recent past, increased attention has been paid by numerous in-
vestigators to the problem of stability of equilibrium of circulatory (i.e.,
nonconservative) elastic systems, as evidenced in a survey article [1].*
The role played by velocity-dependent forces in such problems has been
recognized to be especially intriguing. Ziegler [2] was first to indicate
that linear viscous damping may have a destabilizing effect in such sys-
temsjh;T;T?_:;;\:;;:;;;I';;I;e of the parameter associated with the exter-
nally applied circulatory loading when even slight damping is present may
be smaller than the corresponding value obtained in the absence of any
damping. This discovery supplied the impetus for further studies of this
effect [3-13], but it appears that certain of its features can be brought
into a still broader framework.

In the present study we establish several stability theorems pertaining
to a discrete, linear, elastic system with N deg;;;;NSE\E;;;E;;~ES; static

——

loss of stability (divergence) and for dynamic loss of stability (flutter)

in the presence of sufficiently small velocity-dependent forces of any
physical origin. The stability theore;;:\;;;;:—;;;‘gﬁggg_;;_I;;H’E; several
conclusions of some generality. In particular, the existence of the de-
stabilizing effect of all sufficiently small velocity-dependent forces is
brought into sharper focus, thus extending the results of Nemat-Nasser and
Herrmann [8].

The new theorems contain considerable specific information concerning

the behavior of systems under study and are thus of more immediate value

Numbers in brackets designate References at end of paper.



than the general Routh-Hurwitz criterion.

The System

In the following, a holonomic, autonomous, linear, dynamic system with
N degrees of freedom is described by generalized coordinates qj and general-
ized velocities ﬁj = dqj/dt, j =1,2,...N. The system is subjected to a set
of generalized forces, Qj = Qj(F), j =1,2,...N, which are defined as func-
tions of a real, finite parameter F. This parameter (0 < F < ») is associ-
ated with the magnitude of the externally applied loadings; Qj = 0 for

F = 0. Let

be the equilibrium state of the system. The kinetic energy T and the poten-
tial (strain) energy V, which are assumed to be positive definite, are given

by the following bilinear expressions:

N N
_1 z . . 21 z
T=3 Moy V=3 €ik95%
j:k=1 j,k=1

The equations of motion are then given by

q = j = o e 1
where the summation convention on &all repeated indices is implied and will
be employed in the sequel. The generalized forces Qj are assumed to be
linear, homogeneous functions of the generalized coordinates and are given
by

Qj = kjqu’ j,k=1,2,...N

where [kjk] is a nonsymmetric matrix which vanishes identically for F = 0.

If small velocity-dependent forces of order € are present, the equa-

tions of motion (1) will become



Mjqu + eijqk + cjqu = Qj’ jok =1,2,...N (2)

A Theorem on Static Loss of Stability (Divergence)

It is known that system (1) may lose stability by either flutter (os-
cillations with increasing amplitudes), or divergence (buckling: an adjacent
equilibrium configuration is attained) [12]. 1In the present study we are
primarily concerned with the effects of small velocity-dependent forces on
the loss of stability by flutter, and may want to seek conditions which
prevent divergence. In fact, for a very special class of the matrix [kjk] it
is possible to show that buckling never occurs. For several problems in the
field of aerocelasticity, especially flutter of elastic panels, the matrix
[kjk] assumes a skew-symmetric form arising from the aerodynamic forces.

For this particular system we may state the following theorem:

Theorem I. If the matrix [kjk] is skew-symmetric, system (1) does not

lose stability by divergence.

Proof. The loss of stability by divergence is characterized by the

vanishing of the following determinant [12]:
A = |°jk - kjkl
Clearly, then, if A’ does not change sign the only possible
static position is the initial configuration, qj = 0. The
potential energy V was assumed to be positive-definite quad-

ratic form in qj so that detlcjkl is always a positive quan-

tity. We may also write

—_

N N , X
=1 =1 1 z
V=3 Z k3% T 2 Z 5k33% " 2 k%
k= 3, k=1 3, k=1

b

because kjk =0, j=kand k » j #k. For V to be

ik = Ry



positive-definite, one of the requirements is
A = le,, -k, | >0
ik ik
Thus the determinant A’ cannot vanish. This concludes the
proof.
The result just established could be useful in the theory of determin-

ants and may be generalized to take the following form:

"If a are the real elements of a determinant such that there exists

jk
N
a positive-definite quadratic form E: ajkxjxk (ajk need not be symmet-
j,k=1

ric), then detlajk + bjkl > 0, where b,, are the real elements of any skew-

jk

symmetric determinant."

Theorems on Dynamic Loss of Stability (Flutter)

Let us assume solutions of (1) and (2) in the form q = Akelwt,

i= (-1)%, and obtain the following:

WM A - (ep - kg A = 0 (3)
2 =
W MjkAk - ieijkAk - (cjk - kjk)Ak =0 4)

Equations (3) and (4) lead to the following frequency equations:

detlajk| =8(a;,) =0 (5)
detlajk - 1eijk| =0 (6)
where
a = w2M -c, +k
jk jk jk jk

without any restriction on the structure of kij°

For F = 0, i.e., kij = 0, equation (5) yields the natural frequencies



of free vibration of the system which, in the following, are assumed to be
distinct. As F increases from zero to a certain finite value, say Fe, equa-
tion (5) yields at least one double nonzero root. Such a possibility is
indeed realizable under the condition of kjk being nonsymmetric. We will
not undertake the task of establishing necessary conditions, but merely
assume that coalescence of two frequencies occurs such that beyond this
value of F = Fe equation (5) yields a pair of complex conjugate roots.
Therefore, the system will oscillate with an exponentially increasing
amplitude, i.e., flutter., We shall refer to Fe as the critical load for
the system (1).

Equation (6) may be expanded in powers of e¢ as follows:

A = - iewG,

Iajk Jkl

2
2 __3°A
_—_aajkaazm GypSpm ¥ +o+

A
Bajk

=0

A(ajk) - (ie)w ij + %-(ie)zw

2 .
If, in the above expansion, we neglect terms containing O(e ) and higher, we
are left with

= . oA _
A = A(ajk) - iew e G, 0 (7)

jk

which is an approximate form of the frequency equation of system (2).
Before we proceed further it is essential to estimate the roots of (7)

in terms of the roots of (5). The determinant A(ajk) gives rise to a poly-

3A

. . 2
nomial in wz of degree N, and 3a ij is a polynomial in w of degree N-1.
jk

Let us substitute the following for clarity of later exposition:

2N 2(8-1)

2, -
A( PN(w ) = Py + PN

. +p

ajk) o

wz(N-D + ... 41

_ _ 2, _
e, Cyx T Ryoq (@) =Ty 0



¢

and obtain from (7)

Ay = B(u?) - tewRy_ (u”) = 0 (8)

There are several ways of estimating the roots of (8), but the method ex-

plained below has been found particularly useful; it is based on the following

theorem:

Theorem II. Let d; be the roots of (8), and % aj, j=1,2,...N, those of

Proof.

2 ] .
P _(w = 0. Then, ¢, = £ o, + iB,, where B, is obtained
N j j BJ BJ

from the following expression:

2
eRy_4(@.7)
8, = - L )

From the theory of equations we may write (8) as follows:

2 2 2N p
Ay (w) = Bp(w™) - iewRy (W) =py N (0-a

) =0 (10)

If we substitute w = aj in (10) and note that d; =+ aj + iBj, we
obtain
i @?) = -i8p, T ( 8) I (@ +a - i8)
-ied, o, = -if, o, -¢ -1 o, +o -1
k#]
We also know that Bj are of the order of magnitude O(e). There-~

fore, to be consistent, the above expression may be approximated

as

8.(20)p, T (a2 a2
IVITUN pzq S k
k]

2
e:on.R.N_1 (cvj )

Had we substituted for w -a& in the above, we would have

derived an identical result and, therefore



5 = e“1«-1("’3-2)

i 2y X 2 .2
e G5 %)
k#j

It is also of interest to study higher order effects in €, especially the
quadratic terms. The above technique may be used to derive explicit expres-
sions of any order of magnitude and we establish several such relations in the
appendix,

For distinct, real roots of PN(wZ) = 0, we note an important property of
the expression for Bj. If we arrange aj in descending order of magnitude,
aN > dN-1 > ... d1 > 0, we find that the denominator of the right-hand side of

(9) alternates sign, starting with a positive quantity when j takes on the

Qalues of N, N-1, ... (pN, being the discriminant of the kinetic energy, is a
positive quantity.). RN_1(w2) = 0 will have N-1 roots % ag, and if we assume
that these roots are real and distinct such that dg 1 > dﬁ_z > ... and the co-

efficient of the highest power in RN-1 is a positive quantity, then Bj ob-
tained from (9) will always be positive if the inequality oy > a§_1 > Oy 1

> ... >'a: > d1 holds. For Bj > 0, we immediately conclude that system (2) is
stable. It is also obvious that if any one of the above requirements is
violated, at least one member of the set Bj will be a negative quantity.
Therefore, the system will oscillate with increasing amplitude (flutter)., The
above is a set of necessary and sufficient conditions for the system to be
stable, and, as we will discuss later, they are indeed fulfilled for certain

types of the matrix [G Hence, the following theorem may be stated:

jk]'

Theorem III. For F < Fe’ a necessary and sufficient condition for the
system (2) to be stable is that the coefficient of the
highest power of the polynomial RN-1 be positive and its

roots separate those of PN.



It may be worthwhile to point out the essential differences between the
above stability theorem and the Routh-Hurwitz criterion. The Routh-Hurwitz
criterion sets down the necessary and sufficient conditions that all the roots
of a polynomial lie in the left half of the complex plane. These conditions
have very complex dependence on the coefficients of the polynomial and thus
are not capable of yielding any further information without carrying out ex-
tensive calculations. The readers are referred to the classical treatise by
Routh [14] and a recent work by Gantmacher [15] for a comprehensive discus~
sion of this criterion. By contrast, the stability theorem just established
is sufficiently specific to permit one to draw several conclusions regarding
the effect of velocity-dependent forces as illustrated below.

As a consequence of the established stability theorem, there arises an
interesting special case., For F = 0, the polynomial PN’ by virtue of the
statement of the problem, possesses nonzero, distinct, real roots, and it is
entirely possible that one or several of the requirements stated in Theorem
TII are violated by the polynomial RN_1n A familiar example is that of a
system with negative damping so that some of Bj obtained from (9) are nega-
tive quantities. 1In this special situation the critical load of the system
(2) is zero.

£ Fd is a nonvanishing value of the critical load of system (2), then
we may state the following corollary:
Corollary. For all sufficiently small velocity-dependent forces,
OSFdSFe.
The proof of the above corollary is quite elementary if one bears in
mind the fact that, by the requirement of Theorem III, every rcot of RN~1

is bounded by the two adjacent roots of PN when F = 0. PN’ regarded as a

functior of F, yields at least two roots which approach each other, and,



when F = Fe, complete coalescence occurs. In this interval, PN and RN-1 will
have at least one common root, say when F = qu As soon as F > Fd, therefore,
at least one of Bj will be negative, which indicates oscillation with increas-
ing amplitude. When F > Fe, equation (9) will yield complex numbers for Bj in
conjugate pairs whose real parts will be negative quantities. This concludes
the proof (we indeed included Fd z (0 as a critical load, as discussed earlier.).
So far, we have not indicated the physical origin of velocity-dependent
forces. In view of the fact that the theorems established above may have
applications in various branches of engineering science, it is not desirable
to assign any definite form to [ij]. In the field of elastic stability,
possible origins may be those associated with viscous damping or %ZESEEEEES»
effects. 1In the case of viscous damping the ;;:;I;/Egg;i’;;;;mes a positive-
hE;;;;I;;A;ormn For this case, as was shown by Routh {14], the requirements
of the stability Theorem III are indeed met when F = 0, so that the inequality
Bj > 0 is satisfied. The destabilizing effect of viscous damping, therefore,

follows from the corcllary stated above. This special result was first

obtained by Nemat-Nasser and Herrmann [8].
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Appendix

The determinant A, , when expanded in powers of ¢, may be written in the

following form:

oA 1 2 2 BZA
A = A(ajk) + (-ie)w Sz;; ij + 2 (-ie) w SZ};g;;; ijsz + ... =0

If we neglect orders of 0(63) and higher, the following approximate expression

is obtained:

2 . 2 1 22 2
Ay = Pp(w”) - fewRe ,(w") - 5 e Syp(®) =0 (11)

where, in addition to the designations defined before, the following substitu-

tion has been made:

2
3°A _ 2(N-2) _ 2
35 3 ijGLm = ey oW + ...+ 8y = SN_Z(w )
ik 4m
Let a; be the roots of (11) and % dj, j=1,2,...N, those of PN(wz) = 0.

Then we may write
’ . 2
o, =+ o, +ieB, £ e7f,
] J J ]

to the accuracy of ez. Note that Bj and ej will be of the same order of mag-
nitude as dj. To obtain expressions for Bj and ej we follow the same proced-

ure as before, and we obtain

2, 2, 1 22 2,
P (w7} - fewRy ((w7) - Z €'w Sy-2@) =p

2N ,
N I (w-~ dj)

i=1
If, in the above, we let w = dj’ we have

, 2, 1 2 2 2, 2N '
- 1eajRN_1(dj ) - 7 € aj SN_Z(afj ) Py k51 (aj ak)

The right-hand side of the above expression may, after some calculations, be

2
written in the following form to the accuracy of & :
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2N ’ N 2 2
-0 ) =~ ieB (v, .-
L T oAt TGy )

k#j

N
2 N 2 2 N 2 2
- € {lmjsj z Bk b (arj -o:k ) + Zajej I (Ctj - ark )}
k=1 £=1 k=1
k#j  Atk#] k#j

Therefore, equating the coefficients of like powers of €, we have

2
S, ke (12)
3%y ¥ @2 a2
k=t 3K
K
s N 2_ 2
1 2
s @) - wg ) B 1 @b
5
K ,
0, = ] : (13)
) 2 o 2. o, 2)
Pyl @y %
k#j

Note that by substituting w = -aj and carrying out the above procedure, the
expression on the right~hand side of (13) will be the same, but with a

negative sign in front of it.
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